

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road – 517583 QUESTION BANK (DESCRIPTIVE)

Subject with Code: ADVANCED STEEL DESIGN (20CE1013)

Regulation: R20

Course & Branch: B.Tech - SE

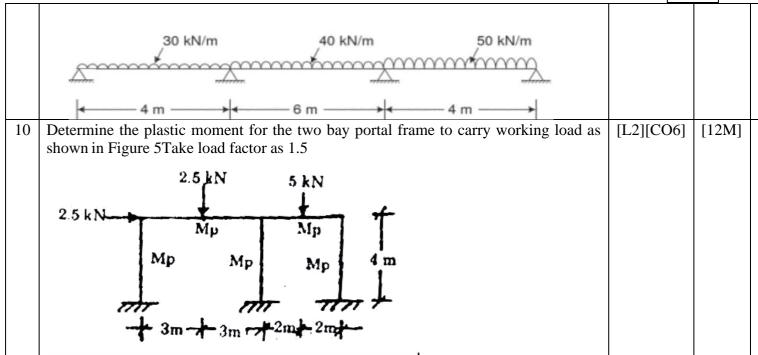
Year & Sem: I-M.Tech&II-Sem

	CONNECTIONS							
	1	Explain about types of welds and joints?	[L2][CO1]	[12M]				
	2	Explain about beam-column connections and its classification?	[L2][CO2]	[12M]				
	3	What are the classifications of bolted connection? Explain with neat sketch?.	[L2][CO1]	[12M]				
	4	What are the types of joints and explain with neat sketch.	[L2][CO1]	[12M]				
	5	(i) Briefly explain the difference between bolted and welded connections	[L2][CO1]	[12M]				
		(ii) Distinguish the following: a) Factor of safety and partial factor for loads						
_		b) Characteristics loads and design loads.						
	6	Two plates of 10mm thickness & widh200mm are to be joined using high strength	[L2][CO1]	[12M]				
		friction bolt (HSFG) of 20mm diameter.Design the joint for maximum strength given						
		that 4.6 grade bolts& Fe 410 steel plate is used.						
,	7	Two plates 10mm x 60mm are connected in lap joint with 5nos. 16mm ø bolt of grade	[L2][CO1]	[12M]				
		4.6 & grade plates are used .calculate the strength & efficiency of joint.						
	8	Find the maximum load the joint can resist provide that 4.6 grade 20mm daimeter bolt	[L2][CO1]	[12M]				
		& Fe410 steel is given .assume the 2 cover plates act together						
	9	Design a double cover butt joint to connect two of 16mm &8mm thickness to take a	[L2][CO1]	[12M]				
		tensile force of 500kN.						
1	0	Explain about beam column connections subjected to eccentric shear.	[L2][CO2]	[12M]				

<u>UNIT –I</u> <u>CONNECTIONS</u>

<u>UNIT –II</u> ANALYSIS AND DESIGN OF INDUSTRIAL BUILDINGS

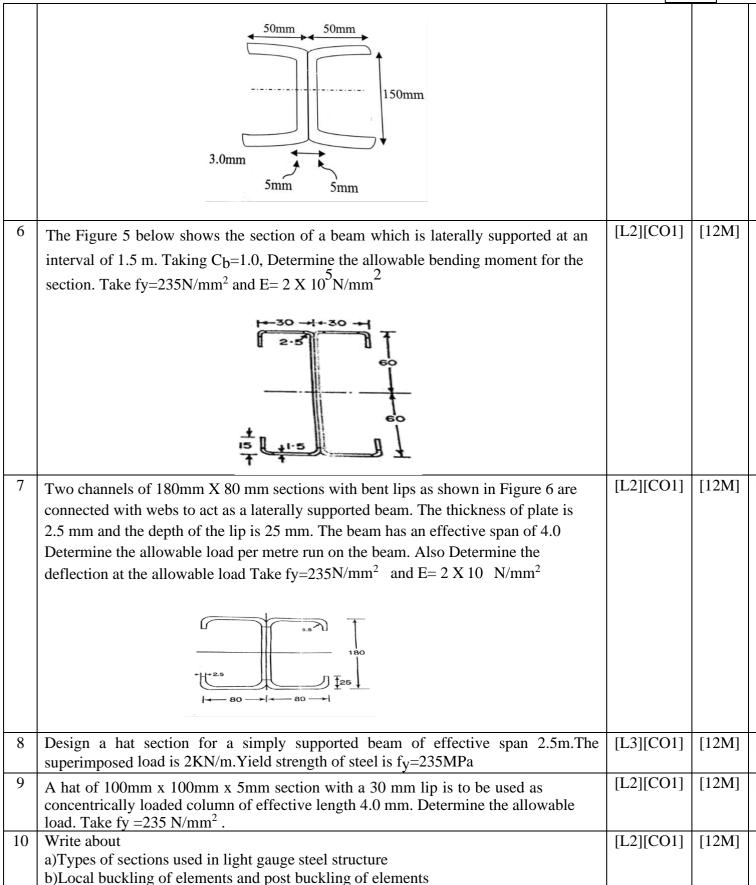
1	Briefly exp	lain the va	arious steps invo	olved in	the de	esign of ro	of trusses		[L2][CO3]	[12M]
2	0		,AC,and joint A	A of a r	oof t	russ as sh	lown in F	Figure 1 for the	[L3][CO3]	[12M]
	following data		Member	Lengtl	h (Compressi	ve force	Tensile force		
			AB	2.3 r	n	60kN		55kN		
	A26	°34′C	AC	1.8 m		55k	N	80kN		
	Figure 1					JJMN				
3	Design a purlin section for the following data Spacing of roof trusses C/C =5m Dead load of Roofing =kN/m Live load on purlin =1.1kN/m Wind load on Purlin=-1.5kN/m						[L3][CO4]	[12M]		
4	0.0		ubular roof truss hich is shown ir			ber meetir	ng at the jo	oint A,	[L3][CO3]	[12M]
	Member	-	Compressive	-		ile force		•.		
	AB	2.2 m	110kN		38kN	8kN		В		
	AC	AC 2.8 m 32kN 8		87kN	AZC					
5	A tie memb .Design the tubes	per in a roo members	of truss is conne and the connect	cted to t ions for	the pri	incipal raf ollowing d	F ter at an a ata. Use g	igure 2 ngle of 90 grade Y _{st} =240	[L3][CO3]	[12M]
		S.No Member				Length	Force			
	1Principal rafter panel2Tie member		er panel		2.6 m	85kN				
				2.2 m	35kN					
6	Design for wind action a) Wind pressure on walls b) Wind loads on roof							[L3][CO3]	[12M]	
7	Explain about a) Dead load b) wind load c)Live load d)Earth Quake load							[L2][CO3]	[12M]	
8	a)Design wind speed and pressure b)wind pressure on roofs							[L2][CO3]	[12M]	
9	Design mer	Design member AB,AC, and joint A of a roof truss as shown in Figure 1 for the					1 for the	[L3][CO3]	[12M]	
	tollowing c	Dellowing data Member Length Compressive force Tensile force								
	A 26°34′ C		AB	2.2 m]	110kN		38kN		
			AC	2.8 m		32kN		87kN		
10			roof truss havin	g the fol	llowir	ng data:			[L3][CO4]	[12M]
	Spacing of Purlin = $2m c/c$									


C	R20	
	Wind pressure = 2.5 kN/m , Roof	
	coverage= AC Sheeting weighing	
	700N/m	
	Live load on purlin=1.4 kN/m	

1	Explain different types of truss bridges	[L2][CO5]	[12M]
2	a) Explain about design of compression chord member.	[L2][CO5]	[12M]
	b) Explain about design of tension chord member		
3	Explain detail design procedure for Gantry Girder	[L2][CO5]	[12M]
4	Eaplain about the component parts of truss bridge	[L2][CO5]	[12M]
5	Determine the tensile strength of the 12 mm thick plate shown in Fig 9.1. Rivets used	[L2][CO5]	[12M]
	for the connection are 20 mm diameter. Allowable tensile stress is 150 N/mm ²		
6	Write step by step design procedure of Gantry Girder	[L1][CO5]	[12M]
7	Find the strength of the 12 mm thick plate shown in Fig. 9.2. All the holes are 21.5	[L2][CO5]	[12M]
	mm as gross diameter. Take ft=150 N/mm ²		
8	The tension member of a roof truss carries a maximum axial tension of 250 kN.	[L2][CO5]	[12M]
	Design the section. Diameter of connecting rivets = 20 mm. Safe stress in tension =		
	150 N/mm^2 .		
9	The tie of a truss carries an axial tension of 225 kN. Design the section of the member	[L2][CO5]	[12M]
	and also the connection of the member to 10 mm thick gusset plate. Use 20 mm		
	diameter rivets.		
10	The tie in a bridge truss carries an axial tension of 350 kN. The member is to consist	[L2][CO5]	[12M]
	of two channels connected back to back on either side of a gusset plate. The diameter		
	of rivets used for the connection is 16 mm. Two rivets are likely to appear in section.		
	Design the member. Safe stress in tension is 150 N/mm		

· · · · ·		,	
1	A continuous beam ABCD is loaded Span AB length=6m and UDL=20KN/m Span	[L2][CO6]	[12M]
	BC length=10m and UDL=25KN/m Span CD length=6m and UDL= 20KN/m.		
	Determine the continuous beam providing most economical section. The yield		
	stress for mild steel is 250N/mm ²		F103 5
2	A simply supported beam of span 6m is subjected to UDL of 20 KN/m. Design a steel beam by plastic design using a combined load factor of 1.7	[L2][CO6]	[12M]
3	A portal frame ABCD with hinged foot has stanchions 4 m high and beam of 6 m span. There is horizontal point load of 40 kN at B. Whole the beam carries a point load of 120 kN at mid span. Using load factor of 1.5, establish collapse mechanism and calculate the collapse Moment	[L2][CO6]	[12M]
4	a) Explain about Idealized stress-strain curve for mild steelb) Explain fully plastic moment capacity	[L2][CO6]	[12M]
5	a)Explain plastic hinge.	[L2][CO6]	[12M]
	b)Determine shape factor for triangular section with base width 'b' and height 'h'c) Determine shape factor for Hollow tube section with its external diameter 'D' and internal diameter 'd'		
6	a) Derive the moment curvature relationship in plastic analysis.b) Calculate the plastic moment capacity required for the continuous beam with working loads shown in Figure 1.	[L2][CO6]	[12M]
	4 KN/m $12 KN$ $5 m$		
	9999 9999		
	$\underbrace{10 \text{ m}}_{10 \text{ m}} \underbrace{10 \text{ m}}_{10 \text{ m}}$		
7	Figure 1 Explain fully plastic moment and determine the fully plastic moment required for the	[L2][CO6]	[12M]
	frame shown in Figure 2, if all the members have the same value of Mp.	[تمالي المراجع ملماحم المراجع ملماحم المراجع ملماحم ملمحم ملماحم ملمحم ملماحم ملماحم ملماحم ملماحم ملماحم ملماحم ملمحم ملم	L 1 2 1 VI
	50 kN		
	4m		
	4.5m 6m		
8	Figure 2 Calculate the collapse load for frame as shown in the Figure 3	[L2][CO6]	[12M]
0	Chronine and completion for frame as shown in the Figure 3	[12][100]	L 1 2 1 V I]
	2W		
	$\begin{array}{c} B \\ 1.5m \\ 1.5m \\ 1.5m \\ \end{array} \longrightarrow W$		
	3m		
	A F 77777		
0	Figure 3		[10] A
9	Design the continuous beam with the service load as shown in the Figure 4. The load factor may be assumed as 2. Provide a uniform cross section throughout the beam	[L2][CO6]	[12M]
L		<u>. </u>	ــــــــــــــــــــــــــــــــــــ

Course Code: 20CE1013



 $\mathbf{R20}$

1	A hat of 100mm x 80mm x 5mm section with a 30 mm lip is to be used as concentrically loaded column of effective length 4.0 mm. Determine the allowable load. Take fy = 235 N/mm^2 .	[L2][CO1]	[12M]
2	Find the allowable axial load for a column section shown in Figure 1. Effective length of the column is 3.6 m. Take fy =235 N/mm ²	[L3][CO1]	[12M]
3	Find the permissible load on the column shown in the Figure 2. The effective length of the column is $3m$		[12M]
4	Calculate the permissible load on the column section shown in Figure 2. The effective length of the column is 3m	[L3][CO1]	[12M]
5	Two channel sections without bent lips 150 mm x 50 mm as shown in Figure 4 are connected with webs to act as a beam. The thickness of channel is 3.0 mm. The effective span of simply supported beam is 5.0 m. Determine the maximum uniformly distributed load inclusive of self weight. Which can be supported by the beam. The beam is laterally supported throughout the span.	[L2][CO1]	[12M]

Course Code: 20CE1013

R20